创新 • 创优 • 创见
搜索
当前位置:主页 > 新闻资讯 >

分析 | 氢燃料电池增湿器选型解析

时间:  2020-09-30 15:26   来源:  旺材氢燃料电池    作者:  网络转载

[汽车总站网 www.chianautoms.com欢迎你]

燃料电池电堆在反应过程中,质子交换膜需维持一定的湿度以保证较高的反应效率,因此要求反应介质需携带一定量的水蒸气进入电堆,这一步通常需通过增湿器来实现。本文从以下六个方面对燃料电池增湿器进行分析介绍。

1、氢燃料电池原理

H2以气体状态经过阳极碳纤维扩散层,在催化层分离为H质子和电子,H质子(以H3O+状态)通过质子交换膜,在阴极催化层与O离子结合生成水。

理论上,质子交换膜只能通过质子,膜材料上有很多磺酸根,只有在湿润的情况下才能有较高的质子传导率。一般情况下阳极氢气和阴极空气都必须加湿,在阴极侧反应生成水,在两侧水浓度梯度差下,水会经过膜迁移到另一侧。

分析 | 氢燃料电池增湿器选型解析

2、水传递的基本原理

(1) 水传递原理电迁移:氢在传导过程中通常不以裸露原子核状态存在,而是通过氢键和水分子形成水合氢离子状态迁移,导致水分子随质 子从阳极向阴极迁移 ,电迁 移的水量与电流密度和质子水合数有关 ;

反扩散:水在阴极形成 ,在膜两侧的水浓度梯度推动下 ,水由阴极向阳极传递 ,其水量正比于水的浓度梯度和膜内水的扩散系数 ,反比于膜的厚度。

压差迁移:在膜两侧压力差推动下,水从高压侧向低压侧流动 ,其水量正 比于压力梯度和水在膜中的渗透系数,反比于水在膜中的黏度。影响很小。

分析 | 氢燃料电池增湿器选型解析

(2)水含量是如何影响质子交换膜的性能的?A、阴极空气湿度:空气相对湿度增大,导致反应界面生成水向阴极扩散层-流道界面迁移受到抑制,从而促进水向阳极侧迁移。

B、阴极空气露点温度:空气露点温度升高,反应生成水向阳极迁移,提高了膜内水含量,增强了膜的质子传导率,使电池输出电势升高。空气露点温度过高,则阴极绝对水量太多,无法以气态形式带走,导致水淹。同时,氧气浓度降低,反应速率降低;传质阻力增加,膜欧姆电阻增加,电池性能降低。

C、电堆温度:电堆温度升高,水蒸气饱和压力增大,促进阳极扩散层内水分蒸发,促进水的浓差迁移,膜的质子传导率提高,电堆性能提升。

D、Crossover效应:电极在相对干燥的反应 条件下,会加速膜电解质的降解速度,从而导致膜的破损,使气体向另一个 电极侧渗透 。

E、膜金属离子效应和催化剂中毒:水分过多会增加杂质对 MEA污染的机会,来自环境中的金属离子、CO、S等有害组分以及电池中产生金属离子等会随着过量的水分扩散到电极表面和膜中,导致膜的金属离子和催化剂中毒等。

3、加湿器选型及应用要求

加湿器选型主要考虑其露点接近温度、流阻、耐温耐压、最大跨膜压差等。

(1) 电堆性能及可靠性对水含量的需求通过测试电堆在不同空气湿度(含水量)下对电堆输出功率的影响,确定最佳进堆空气湿度;同时也要考虑不同含水量情况下对电堆寿命的影响。

(2)加湿器露点接近温度作为评估其加湿能力的原因燃料电池用加湿器为气气加湿型,通常通过给定湿侧接近饱和的湿气体(湿侧的初露点),看能把干空气加湿到什么程度(干侧终露点)。定义湿侧初露点与干侧终露点之差为露点接近温度,基本可以评估加湿器的加湿性能。也可以通过膜水传递率g/(min.cm2)来评估。

分析 | 氢燃料电池增湿器选型解析

(3)允许介质温度及跨膜压差:膜材料和膜结构一般膜材料的耐温都在100℃以上。在DOE要求中跨膜压差需>75kpa,无支撑超薄中空纤维管要达到这个水平有一定难度。

分析 | 氢燃料电池增湿器选型解析

(4)可靠性:性能、泄露一般可靠性性测试,可以对比耐久前后露点接近温度;也可以通过气泡法判断膜破损率。

4、加湿器选型及应用要求

(1)博纯,杜邦独家授权Nafion中空纤维管;(2)KOLON,聚砜均质中空纤维管;(3)NOK,聚苯砜中空纤维膜,纳米孔隙;(4)Dpoint,采用夹层复合平板膜Gore+PFSA。

分析 | 氢燃料电池增湿器选型解析

5、膜材料及中空纤维管结构

(1)聚砜系列、聚酰亚胺、含氟磺酸膜聚砜具有优良的机械性能、化学稳定性,耐热性好,耐生物降解,内孔隙率高且微孔结构稳定,常用作气体分离膜的基材。但是属于疏水性膜材料。

聚砜、聚醚砜、聚苯砜,具有接近的性能,要应用在燃料电池上,一般可通过黄花处理提高其亲水性。

分析 | 氢燃料电池增湿器选型解析

聚酰亚胺具有高透气性、选择性、良好的耐热能力,机械强度高,化学稳定性、耐溶剂性好,可制成具有高渗透系数的自支撑不对称中空纤维膜。亲水性差,需要磺化处理。

聚酰亚胺也作为一种未来有很好前景的质子交换膜在被大量研究。

分析 | 氢燃料电池增湿器选型解析

全氟磺酸 PFSA作为质子交换膜,具有水在浓差下传递的功能,也可以作为增湿器的膜。含氟系列膜还包括,戈尔的ePTFE膨体聚四氟乙烯、巴拉德的BAM3G部分氟化质子交换膜。价格太贵了。

(2) 聚砜系列、聚酰亚胺、含氟磺酸膜中空纤维管膜主要分为多孔膜、表皮膜、均质膜,根据其特点制成超滤膜、正/反渗透膜、气体分离膜、血透膜等。中空纤维管膜的特点是相同体积下表面积大。

分析 | 氢燃料电池增湿器选型解析

中空纤维管制备工艺主要分为溶液纺丝法和熔融纺丝法。溶液纺丝法需要致孔剂在膜上产生微孔,且一般孔径稍大,较常用;熔融纺丝法,通过拉伸产生微孔,技术要求高。

分析 | 氢燃料电池增湿器选型解析

平板膜,通过中心很薄的PFSA夹层和两侧的多空层复合而成。表面积相对小。

分析 | 氢燃料电池增湿器选型解析

6、内增湿技术

增湿的核心问题是水管理。丰田通过温度控制和阳极水循环做到了不需要外部增湿器,内增湿对电堆要求也高,对控制策略要求更高。另外也有如在集流端板上通过多孔碳板进行水交换,通过电堆中间增加类似单堆的模组进行水交换。
 

[汽车总站网 www.chianautoms.com欢迎你]

读者留言
看不清?点击更换

汽车总站网

  • www.chinaautoms.com/由北京茂胜文化传媒有限公司版权所有@2019

    京ICP备18056018号

    合作QQ: 305140880

    地址:北京市朝阳区清河营国际城乐想汇3号楼1612室